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This work presents an approximate nonlinear analytical model for the problem of fluid–

structural interaction in a valveless micropump. The model is constructed using the

lumped-mass approach and takes into account the inertial force and time variation of

mass density of the working fluid within the micropump chamber, pressure viscous

nonlinearity due to the membrane mid-plane stretching. It consists of a set of coupled

partial integro-differential equations which is reduced to a third order nonlinear

coupled fluid-plate vibration equation by using the assumed mode method to

approximate the plate dynamic deflection. An approximate analytical solution for the

nonlinear vibration model is carried out using the harmonic balance method and is used

to investigate the effect of various system parameters on the performance of the

micropump. The obtained model and approximate analytical results are compared with

those available in the open literature. The approximate analytical results show that,

depending on the micropump physical parameters and membrane driving frequency,

the working fluid stiffness, which arise in the present model as a result of taking into

account the variation of the fluid density with time, and the membrane geometric

nonlinearity can have significant effects on the predicted micropump performance and

can lead to a complex nonlinear dynamic behavior. The accuracy of these results is

subject to a future numerical validation of the presented approximate theoretical

model.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The assessment of dynamic performance of micro-fluid handling devices have in recent years become a major area of
research because of very promising technical and commercial potentials of using these devices in the medical as well as in
other fields. Advances of microelectromechanical systems (MEMS) manufacturing technology in recent years have enabled
the design and fabrication of a variety of miniaturized fluid delivery devices to be used, for example, in controlled drug
delivery processes. The practical use of such devices usually involves the design of a controller which requires a good
understanding of the device dynamic behavior over a range of operating conditions.
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A main part of a microfluid handling device is the micropump. Over the past two decades a variety of micropump novel
designs based on various pumping principles and employing different actuation methods have been proposed for various
micro-fluid handling applications [1]. A particular type of micropump which has received a lot of attention in recent years
is the diaphragm based-valveless one shown schematically in Fig. 1, [2]. The principles of operation of this type of
micropumps are described in [3,4], among others. The vibrating diaphragm constitutes the pumping mechanism, and
among the different methods which may be used to actuate this vibration the piezoelectric method is the more commonly
used one. This type of micropump design exploits the dependence of pressure loss of the flow through the pair of passive
(fixed geometry) diffuser/nozzle elements at the chamber inlet and outlet ports on the direction of the flow through these
elements to obtain a one way net flow over a cycle of diaphragm vibration. During the pumping phase, e.g. when the
diaphragm is deflected in downward direction, the flow from the pumping chamber is in the nozzle direction at the inlet
port and is in the diffuser direction at the output port. On the other hand, during the intake phase of a pumping cycle,
e.g. when the diaphragm is deflected upward, the flow through the inlet port is in the diffuser direction and the flow
through the output port is in the nozzle direction. Because, with diffuser/nozzle elements having same size and shape, the
resistance to flow in the nozzle direction is higher than that in the diffuser direction a net flow from inlet to outlet is
obtained over a pumping cycle.

In addition to design simplicity and low production cost this type of micropumps, unlike other type of micropumps, has
no interior moving mechanical parts (e.g., check valves) to control pumping chamber inlet and outlet port resistance to
flow and thus requires relatively less control effort, has lower risk of clogging and can be driven at higher frequencies than
other types of micropumps. These features make this type of micropump attractive in a number of important applications.
And, in order to advance their growing use and commercialization, a number of experimental and theoretical
investigations of their performance over different ranges of their working and design parameters to improve their
performance were carried out, e.g. [5–19].

It is noted that a rigorous study of the dynamic behavior of the whole membrane based-valveless micropump involves
formulating and solving highly nonlinear partial differential equations that account for the effects of couplings among
various physical fields, e.g., electrical, mechanical, structural and thermal fields. Even when the thermal effects, electro-
mechanical field coupling and the geometric non-linearity due to mid-plane stretching are ignored, the dynamic behavior,
due to the inherently nonlinear fluid flow equations, of the couple structural–fluid field problem is governed by nonlinear
partial differential equations which can only be completely analyzed using cumbersome and time consuming numerical
simulation tools. However, numerical results are in general not sufficiently enlightening and approximate analytic
solutions are more preferred and needed to guide and verify numerical solutions but are more difficult to obtain. Also the
approximate analytical solutions, which can only be obtained after making simplifying assumptions, yield functional
relations between system response and parameters and thus give more insight than the numerical ones into the problem
underlying physical mechanisms.

Because the problem of obtaining a complete model for the micropump is, as noted above, not at all trivial, various
studies have employed different approximate analytical and numerical methods to gain a better understanding of the
dynamics of the whole or components of the micropump. Examples of analytical, numerical and experimental studies
which have focused on the pressure drop characteristics and rectification of the flow though the diffuser/nozzle elements
are found in [5–12]. Approximate theoretical and numerical studies of the dynamics of the flow throughout the
micropump, membrane and the actuating piezoelectric or electrostatic field dynamics, have been carried out in [13–19].
These studies have used various simplifying assumptions concerning the effects of fluid–structural and electro-mechanical
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Fig. 1. Schematic representation of the valveless micropump vertical cross section in supply mode.
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couplings on the micropump dynamic performance. Cui et al. [13] used an FE software ANSYS to model and simulate the
dynamic performance of a valveless micropump excited by a circular piezoelectric-elastic membrane actuator. Their
analysis, which is based on mass conservation, accounts for electro-solid–fluid coupling, and the variation of pressure
within the micropump chamber due to the unsteadiness of the flow within the chamber, but ignored chamber flow inertial
effects and membrane structural nonlinearities. Ng et al. [14] used the boundary element method (BEM) in combination
with the finite element method (FET) to study the effect of electro-mechanical coupling on the dynamic response of a
micropump driven by an electrostatic actuator. They used von Karman strains to account for mid-plane stretching
geometric nonlinearity of the 2-D electrode plate, but ignored fluid–structural interaction effects. Olsson et al. [15] used a
lumped-mass approach in conjunction with an FE software ANSYS to construct an analogous four components electrical
diagram for the four components (two diffuser/nozzle, chamber and piezoelectric-membrane disc) of a valveless
micropump. They employed mass conservation law on the chamber volume, energy equation for diffuser/nozzle/flows and
the Newton’s second law along with the FE method for the membrane/piezoelectric disc to formulate a four equations
dynamic model and analogous electrical diagram for the whole micropump. It is noted that this model accounts for the
variation with time of pressure (e.g. variation of mass density) of the flow within the micropump chamber. Accordingly
the analogous electrical diagram included a capacitor element that models the finite stiffness of the fluid within the
micropump chamber. Olsson et al. above simplified their model to a set of three coupled equations by assuming the fluid
inside the micrpump chamber have negligible inertia and infinite stiffness and then used MATLAB to numerically solve the
simplified model. Pan et al. [16] developed a single mode nonlinear structural–fluid coupling vibration model for a
micropump driven by a square membrane using linear plate theory, mass conservation equation and diffuser/nozzle
pressure drop. The source of the nonlinearity in their single degree of freedom oscillator model is a quadratic damping
term which arises entirely due the nonlinear pressure-flow rate characteristics of the pump diffuser/nozzle elements. Also
their model which ignores inertial and capacitive effects of the unsteady dynamic flow showed no dependence of any of
model parameters on the chamber height and thus excludes the effect of the pump size on the dynamic performance of the
pump. Pan et al. above presented simulation results of an approximate first order perturbation solution to their nonlinear
oscillator model under harmonic excitation for the case where there is no difference between the inlet and outlet
pressures. They presented simulation results which showed that, when the nonlinearity is not negligible, the steady sate
response amplitude of this oscillator, unlike that of a harmonically forced linearly damped oscillator, reaches its minimum
value when the forcing frequency is near the first natural frequency of the plate. Their results also showed that the
maximum response, e.g. maximum plate deflection and the maximum pump volumetric stoke, occur at a forcing frequency
way below the plate first natural frequency o1. Furthermore as the forcing frequency is increased from a zero value the
mean flow rate of the pump, for fixed forcing amplitude and magnitude of the nonlinearity coefficient, increases rapidly to
a value that remains nearly constant afterwards at a forcing frequency o� � 0:1o1; that is, from power consumption point
of view, o* represents an optimal working frequency. Machauf et al. [17] used a simplified single mode-lumped-mass
fluid-plate vibration model which, as the model in [16], ignores the unsteadiness of the dynamic flow within the
micropump chamber, to numerically study the dynamic performance of an electrostatically actuated valveless micropump.

Pan et al. [18] extended the analysis they presented earlier in [16] by adding the effect of inertial force of the flows
inside the pump chamber and through the diffuser/nozzle elements. They obtained a single mode nonlinear vibration
model for the plate which differs from the earlier model in [16] in that it accounts for the size (e.g., height) of the pumping
chamber and geometry of the diffuser/nozzle elements. The effects of fluid inertia in their new model appear as an added
effective inertia term which includes a parameter that depends on the geometry of the diffuser/nozzle in addition to pump
chamber size. They presented simulation results of an approximate first order perturbation solution as in [16] for the case
where there is no difference between inlet and outlet pressures and showed that the fluid inertia, depending on system
parameters, can have significant effects on the phase shift and amplitude of the plate dynamic response to a harmonic
excitation. Their results showed that, unlike those predicted using their earlier model in [16], there exists an optimal
forcing frequency o* which is lower than the plate first natural frequency at which the phase shift reaches 901 and the
micropump net output volumetric flux reaches its maximum. Also these results show that the amplitude of the response
reaches its maximum value at forcing frequency o**&ne;o*.

It is noted that the above investigations [16–18] assume the plate (membrane) to be perfectly flat and has uniform,
clamped-clamped or simply supported boundary conditions and a linear normal mode dynamic deflection shape. Under
these ideal conditions, the plate space-averaged dynamic deflection, which corresponds to the change in pump chamber
volume is, except for the first mode, identically zero. Consequently, the obtained volumetric stroke as well as the added
inertia due to fluid–structural interaction are, expect for the first linear mode, zero. Fan et al. [19] used finite element
method and computational fluid dynamics to simulate the electro-fluid–structural coupling in a piezoelectrically actuated
valveless micropump with a clamped rectangular PZT-membrane. They presented numerical results for the case where the
PZT-membrane bi-layer first natural frequency is 33.57 kHz. Their results showed that when the excitation frequency is
below 7.5 kHz the output flow rate increases and the membrane (plate) deflection shape remains self similar, has a single
peak and its amplitude increases as the excitation frequency is increased. However as the excitation frequency exceeds
7.5 kHz the output flow rate and maximum plate deflection tend to decrease and plate deflection tends to exhibit a
complicated shape with two or more peaks.

In the present work an approximate nonlinear analytical model for the fluid–structural interaction in a valveless
micropump is developed using a lumped-mass approach. The working fluid is assumed to a liquid which has finite
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stiffness. The developed model is a set of three nonlinear coupled partial integro–differential equations which account for
the inertial force and time variation of mass density of the fluid within the micropump chamber, pressure viscous losses of
the flow through the diffuser/nozzle elements and the structural geometric nonlinearity due to the membrane mid-plane
stretching. The basic control volume continuity and momentum equations are used to analyze the micropump chamber
fluid flow field. The equation of motion that governs the plate transverse dynamic deflection which captures the mid-plane
stretching is, for mathematical simplicity, represented by the Berger’s approximation [20–22]. In this connection, it is
noted that nonlinear vibrations of ‘‘dry’’ elastic plates is an area of active research and there are several analytical and
numerical formulations of plate geometric nonlinearity due to mid-plane stretching. The more commonly used plate
model is the von Karman model, e.g. [23], but in order to avoid solving two instead of one governing equation, the simpler
Berger’s model, which assumes the strain energy corresponding to the second invariant of mid-plane strain to be
negligible, but nonetheless is known to give reasonably accurate results for the cases of immovable edges [20–22], is
instead used in this work. Furthermore, the obtained set of three coupled equations in this work are reduced into a single
nonlinear partial integro-differential equation for the fluid-plate vibration by assuming, as in [16,18], the inlet and outlet
pressures to be equal. The Galerkin method is then used to obtain a single mode nonlinear temporal model describing the
coupled fluid-plate nonlinear vibration which is then solved using the approximate harmonic balance method. The
obtained approximate analytical solutions are compared, over a selected range of system parameters, with those obtained
numerically and, when it is possible, with those available in [16,18].
2. Problem description

A two dimensional schematic of the vertical cross-section of the diffuser/nozzle micropump under consideration in this
work is shown in Fig. 1. The vertical walls and bottom side of the pump chamber, as well as side walls of diffuse/nozzle
elements are assumed to be perfectly rigid. The upper part of the chamber is assumed to be an elastic thin plate, which
constitutes the pumping mechanism, and is attached firmly to the chamber vertical walls. The chamber, and thus the plate,
has a uniform horizontal square cross-section of side length a, and the chamber height is L. The plate is assumed to be
isentropic, has mass densityrm, uniform thickness h, modulus of elasticity E, and Poisson ratio m. The actuator, not shown,
is assumed to exert an excitation force f(x,t) on the plate upper surface. The dynamic pressure of the fluid in the chamber is
assumed to change spatially only with vertical position z, and is given by P at the chamber upper section (e.g. at the plate
bottom surface) and by PR at the chamber bottom section R–R. For simplicity, the diffuser/nozzle elements are assumed to
have same shape and geometry. Each of these two elements acts as a diffuser when the flow through the element is in the
direction of increasing cross-sectional area, and as a nozzle with this flow is the direction of decreasing of the element
cross-sectional area. The inlet pressure is designated by Pin and the outlet pressure by Pout. The pressures P, PR, Pin and Pout

are all gauge pressures. The fluid is assumed to have mass density rf which is spatially uniform but is time dependent.
During the supply phase of a pumping cycle, e.g. when the plate velocity is in the downward direction, the flow from the
chamber through the input port is in the nozzle direction while the flow from the chamber through the output port is in
the diffuser direction. During the intake phase, e.g. when the plate velocity is in the upward direction, the flow into the
chamber through the input port is in the diffuser direction while the flow from the outlet port into the chamber is in the
nozzle direction.

As indicated before, because resistance to flow (e.g. pressure loss) in the nozzle direction is higher than that in the
diffuser direction a net flow from inlet to outlet port is obtained over a cycle of plate vibration. Therefore, the formulation
of the equations of motion for the flow field requires that one writes the equations for each of the two phases of the
pumping cycle and then, under the assumption of same shape and size diffuser/nozzle elements, one combines them into a
single set, e.g. [8,11,16–18], that accounts for the dependence of the pressure drop on the direction of the flow velocity.
3. Equations of motions

3.1. Plate model

The equation governing the dynamic deflection of the above described thin, isotropic plate of the micropump, which
accounts for the in-plane membrane force, is, using the approximate Berger’s plate model, given by [20–22]

Dr4w�Nr2wþrP

@2w

@t2
¼ f ðx; tÞ�P (1)

where w(x, y, t) is the transverse plate deflection (in the z direction),

D¼
Eh3

12ð1�m2Þ
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is the plate bending rigidity,

r
4
¼

@4

@x4
þ2

@4

@x2@y2
þ
@4

@y4

is the bi-harmonic operator,

r2
¼

@2

@x2
þ
@2

@y2

is the Laplacian operator, and N is the induced in-plane membrane force. For cases where the square plate is fastened at its
edges in a way that these edges remain at fixed distances apart, N is given by the approximate expression [22],

N¼�
Eh

2Apð1�m2Þ

Z a

0

Z a

0
wr2w dx dy (2)

where Ap=a2 is the un-deformed plate cross-sectional area in the x–y plane.
It is noted that the dynamic pressure P in Eq. (1) is a function of plate defection w and flow field velocity. Thus

Eq. (1) must be solved simultaneously with the governing flow field equations. In order to avoid such a complex task of
solving simultaneously complicated coupled continuous field equations which can only be done using numerical
simulation methods, an approximate analytical solutions for the pressure P and output flow flux are obtained using an
approximate lumped parameter analysis of the flow field equations as was done in, e.g., [15–18]. Also, as indicated in the
previous section, it is necessary to solve the flow field equations for both the supply and intake phases of the pumping
cycle.

3.2. Flow field model

3.2.1. Supply phase, p4pin, p4pout

Referring to Fig. 1 and to the assumptions stated in Section 2, the application of the momentum equation (e.g. Newton’s
second law) for the fluid inside the pumping chamber boundaries assuming zero wall shear and negligible momentum flux
through the diffuser/nozzle elements, yields [18]

P�PR ¼ Pc ¼ rf AP
d2wðtÞ

dt2
(3)

where

wðtÞ ¼
1

AP

Z
a

Z
wðx; y; tÞdx dy (4)

is the plate instantaneous average deflection and P–PR is, for mathematical convenience, defined as Pc. The diffuser/nozzle
elements at inlet and outlet are modeled as passive (fixed geometry) resistive elements. For this phase, where the flow
through the chamber inlet port Qi is in the nozzle direction and that through the outlet port Qo is in the diffuser direction,
the viscous pressure losses thorough these two elements may be expressed as, [15–18],

PR�Pin ¼ rf Cn
Q2

i

2A2
(5)

PR�Pout ¼ rf Cd
Q2

o

2A2
(6)

where A is the diffuser(nozzle) throat cross-sectional area, Qi and Qo are, respectively, the volumetric fluxes through the
inlet and outlet ports of the micropump, and Cd and Cn, (Cn4Cd), are, respectively, the diffuser and nozzle pressure loss
coefficients. For analysis convenience Eq. (5) is subtracted from Eq. (6) whereby one obtains

Pout�Pin ¼
Cnrf

2A2
Q2

i �
Cdrf

2A2
Q2

o (7)

For the special case where Pin=Pout the above Eq. (7) gives

Q2
i ¼

Cd

Cn
Q2

0 (8)

Next, application of the mass continuity equation for the flow field within the pump chamber, and, for convenience,
taking the values of Qi and Qo to be negative when flow is out of the pump chamber, yields

�riQi�roQo ¼
dðrcVÞ

dt
(9)

where V is the instantaneous volume of the micropump chamber, ri, ro and rc are, respectively, the densities of fluid at
inlet, outlet and inside the micropump chamber. Assuming the fluid density to be constant throughout the micropump
volume, i.e., let riffiroffirc � rf , and expressing the chamber volume as V(t)=Vc+DV(t), where Vc=ApL is the chamber
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volume when the plate is flat (e.g., when w=0) and DVðtÞ ¼�APwðtÞ is the volumetric displacement of the pumping
mechanism (plate), Eq. (9) becomes

QiþQo ¼�
APL

rf

drf

dt
þAP

dw

dt
(10)

It is noted that although the density of the fluid is assumed to be independent of space, which is reasonable considering
the small size of the pump control volume, its time variation is not necessarily negligible. Assuming the working fluid
stiffness to be finite and using the relation

drf

dt
¼
rf

b
dPc

dt
;

where b is the fluid (liquid) isothermal bulk modulus of elasticity coefficient, Eq. (10) becomes

QiþQo ¼�
APL

b
dðPcÞ

dt
þAP

dw

dt
: (11)

It is noted that because no control valves are present at the inlet and outlet ports of the present micropump the
pumping action is mostly hydrokinetic (e.g. the inlet and outlet ports are hydrodynamically connected). Thus the working
fluid stiffness in this case is not expected to have the same effect as in the case of a totally hydrostatic pump but its effect
will depend among others, on the resistance to flow through the inlet and outlet ports (e.g. on the minimal cross-sectional
area of the inlet and outlet ports) as will be shown in later sections.

Next, solving Eqs. (3)–(7), and (11) simultaneously for P, Qi, and Q0 leads to

P¼
PinþPout

2
þ

Cnrf

4A2
Q2

i þ
Cdrf

4A2
Q2

o þrf L
d2w

dt2
(12)

Qi ¼
�ðCd=CnÞðAP

_w�ðAPL=bÞ _PcÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCd=CnÞðAP

_w�ðAPL=bÞ _PcÞ
2
þð1�ðCd=CnÞÞðð2A2=Cdrf ÞDPÞ

q
1�ðCd=CnÞ

(13)

and

Qo ¼
ðAP

_w�ðAPL=bÞ _PcÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCd=CnÞðAP

_w�ðAPL=bÞ _PcÞ
2
þð1�ðCd=CnÞÞðð2A2=Cdrf ÞDPÞ

q
1�ðCd=CnÞ

(14)

where DP=Pout�Pin. It is noted that the process of obtaining the above two equations involves solving quadratic equations
for Qi and Q0. The sign of radicals in these equations are determined by the requirements that Qi and Q0 must satisfy Eq.
(10) and Q04Qi for the supply phase.

Eqs. (1)–(3), and (12)–(14) represent the micropump dynamic lumped-mass model for the supply phase. These
equations can, for given f(t), Pin, Pout, and plate deflection mode shape, be used to determine the four unknowns w, Qi, Q0

and Pc.

3.2.2. Intake phase: popin, popout

The derivation of the governing equations for this phase follows the same procedure used for the supply phase, except
that in this case the flows into the chamber are considered positive, and the flow through the inlet port is in the diffuser
direction while that through the outlet port in the nozzle direction. Accordingly, the governing equations for the pressure
losses through the inlet and outlet ports of the chamber and the mass continuity of the flow field within the chamber take
the form

Pin�PR ¼ rf Cd

Q2
i

2A2
(15)

Pout�PR ¼ rf Cn
Q2

o

2A2
(16)

and

QiþQo ¼
APL

b
dðPcÞ

dt
�AP

dw

dt
(17)

Subtracting Eq. (15) from Eq. (16), one obtains

Pout�Pin ¼
Cnrf

2A2
Q2

0�
Cdrf

2A2
Q2

i (18)

where for the special case of Pin=Pout the above equation becomes

Q2
o ¼

Cd

Cn
Q2

i (19)
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Solving simultaneously Eqs. (15)–(17), along with Eq. (3), for P, Qi and Q0 leads to

P¼
PinþPout

2
�

Cdrf

4A2
Q2

i �
Cnrf

4A2
Q2

o þrf L
d2w

dt2
(20)

Qo ¼
�ðCd=CnÞððAPL=bÞ _Pc�AP

_w Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCd=CnÞððAPL=bÞ _Pc�AP

_w Þ2þð1�ðCd=CnÞÞðð2A2=rf CnÞDPÞ
q

1�ðCd=CnÞ
(21)

and

Qi ¼
ððAPL=bÞ _Pc�AP

_w Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCd=CnÞððAPL=bÞ _Pc�AP

_w Þ2þð1�ðCd=CnÞÞðð2A2=rf CnÞDPÞ
q

1�ðCd=CnÞ
(22)

where as before, DP=Pout�Pin and the sign of radicals in these equations are determined by the requirements that Qi and Q0

must satisfy Eq. (17) and Q0oQi for this phase.
Eqs. (1)–(3), and (20)–(22) represent the micropump dynamic model for the intake phase, e.g. for the case _w o0. These

equations can, for given f(x,t), Pin,Pout, and plate deflection mode shape, be used to determine the four unknowns w, Qi, Q0, P

and Pc during the intake phase.

3.2.3. Combined model

Eqs. (1)–(3), (12)–(14) and (20)–(22), along with Eq. (2) describe the micropump dynamic behavior during the intake
and supply phases. This set of equations are, for convenience, rewritten in the following form:

Dr4w�Nr2wþrPh
@2w

@t2
þrf L

d2w

dt2
þ

rf

4A2
RðQi;QoÞ ¼ f ðx; tÞ�

PinþPout

2
(23)

where

RðQi;QoÞ ¼
CnQ2

i þCdQ2
o for _w 40

�CdQ2
i �CnQ2

o for _w o0
;

8<
: (24)

N is as given in Eq. (2), and Qi and Q0 are, respectively, given by Eqs. (13) and (14) when _w 40, and by Eqs. (21) and (22)
when _w o0. Eqs. (3)–(24) constitute an approximate partial integro-differential nonlinear model for the present valveless
micropump which is not easily analyzed using approximate analytical methods. A simplified form of this model that can be
analyzed analytically is presented in the next section.

4. Approximate model

For the special case of DP=0, Pin=0 the model obtained above can be reduced to an integro-partial differential equation
with single independent variable w that can be analyzed, after introducing reasonable simplifications, using approximate
analytical methods. Accordingly, for this special case, the flux Eqs. (13), (14), (21)–(24) become:For _w 40

Qo ¼
AP

_w�ðAPL=bÞ _Pc

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCd=CnÞ

p (25)

Qi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCd=CnÞ

p �
Ap

_w�ðAPL=bÞ _Pc

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCd=CnÞ

p ¼

ffiffiffiffiffi
Cd

Cn

s
Qo (26)

RðQi;Q0Þ ¼
2CdCn½Ap

_w�ðAPL=bÞ _Pc�
2

ð
ffiffiffiffiffi
Cd

p
þ

ffiffiffiffiffi
Cn

p Þ
2 (27)

and for _w o0

Qi ¼
�AP

_wþðAPL=bÞ _Pc

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCd=CnÞ

p (28)

Qo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCd=CnÞ

p �
�Ap

_wþðAPL=bÞ _Pc

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCd=CnÞ

p ¼

ffiffiffiffiffi
Cd

Cn

s
Qi (29)

RðQi;Q0Þ ¼
�2CdCn½�Ap

_wþðAPL=bÞ _Pc�
2

ð
ffiffiffiffiffi
Cd

p
þ

ffiffiffiffiffi
Cn

p Þ
2 (30)
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Next, using the time derivative of Eq. (3) to rewrite the above expressions of Qi and Q0 in terms of w, one has

_Pc ¼
Lrf

b
_Pc
€wþrf L.’w (31)

Solving the above equation for _Pc one obtains

_Pc ¼
Lrf .’w

1�ðLrf =bÞ €w
(32)

Then using the small term approximation, (e.g., in most practical cases ðLrf =bÞ €w 51), the above equation yields the
following approximate expression for _Pc:

_Pc ¼ Lrf .’w (33)

Substituting Eq. (33) into Eqs. (27) and (30), expanding the square bracketed terms and ignoring the term

APrf L2

b
.’w

 !2

which appears in these expansions, and because the pressure drop is in the direction of flow through the diffuser
/nozzle elements, the terms _w

2
and � _w .’w, are rewritten, respectively, as _w j _wand _w=.’w to allow for reverse flow,

leads to

RðQi;QoÞ ¼

2CdCn

�
A2

P
_w

2
�ð2L2A2

P=bÞ _w .’w
�

ð
ffiffiffiffiffi
Cn

p
þ

ffiffiffiffiffi
Cd

p
Þ
2

for _w 40

�2CdCn

�
A2

P
_w

2
�ð2L2A2

P=bÞ _w .’w
�

ð
ffiffiffiffiffi
Cn

p
þ

ffiffiffiffiffi
Cd

p
Þ
2

for _w o0

¼

2CdCn

�
A2

P j
_w j _wþð2L2A2

P=bÞj _w j.’w
�

ð
ffiffiffiffiffi
Cn

p
þ

ffiffiffiffiffi
Cd

p Þ
2 for all _w

8>>>>>>><
>>>>>>>:

(34)

Substituting Eq. (34) into Eq. (23), and Eqs. (25) and (29) into the mean output flux Q equation

Q ¼
1

T

Z T

0
Qo dt; (35)

where T is the period of the excitation force f(x,t) and using the relation Vc=APL, then, for the special case of Pin=Pout=0, one
obtains the following approximate coupled fluid-plate vibration equation

Dr4w�Nr2wþrPh
@2w

@t2
þrf L

d2w

dt2
þ

rf A2
PCdCn

2A2ð
ffiffiffiffiffi
Cd

p
þ

ffiffiffiffiffi
Cn

p Þ
2
j _w j _wþ2

Lrf

b
_w .’w

� �
¼ f ðx; tÞ; (36)

and the mean output flux Q relation

Q ¼
Ap

Tð
ffiffiffiffiffi
Cn

p þ
ffiffiffiffiffi
Cd

p
Þ

Z T

0
ð _w�ðL2rf =bÞ.’wÞ½

ffiffiffiffiffi
Cn

p
Uð _w Þþ

ffiffiffiffiffi
Cd

p
Uð� _w Þ�dt (37)

where N is as given by Eq. (2), and U, is the unit step function. It is noted that the present model above coincides with that
developed by Pan et al. [16] after deleting from it the nonlinear geometric, fluid inertial and fluid stiffness terms (e.g. after
setting each term involving N, L and b in Eqs. (36) and (37) to zero). The present model also agrees with that developed by
Pan et al. [18] after deleting from the present model the nonlinear geometric term and the fluid stiffness terms (terms
involving b) and keeping in Pan et al. model only the inertial effect of the pump chamber flow (e.g. after deleting from Pan
et al. model the inertial effect of diffuser/nozzle element flows).

5. Analysis

5.1. Reduced order model

The governing nonlinear spatially continuous coupled fluid-plate vibration Eq. (36) does not admit closed
form solutions. Also this equation is not readily amenable to well known approximate analytical methods of
the nonlinear theory, such as the perturbation methods, partly because it contains a third order time derivative
term. It is noted that a widely used approach for analyses of nonlinear spatially continuous equations is to reduce
them to ordinary differential equations in time using a spatial discretization approach, such as the finite element
(FE) or the assumed mode methods [23]. In the present work the direct and simple approach of the assumed
one-linear-mode method is used to reduce Eq. (36) to a SDOF ordinary differential equation in time. Accordingly one
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assumes

wiðx; y; tÞ ¼ qiðtÞfiðx; yÞ (38)

where qi(t) is the ith mode, unspecified function of time generalized coordinate and fi(x,y) is the ith linear mode shape
function of the plate in the absence of fluid interaction which satisfies the linear equation

D

ha4rP

r4fiðx; yÞ ¼o2
i fiðx; yÞ (39)

where oI is the dry plate ith natural frequency. By means of the Galerkin’s standard procedure, substituting Eqs. (38), (39)
and (2) into Eq. (36), inserting dimensionless variables

x1 ¼
x

a
; x2 ¼

y

a
;

assuming, without loss of generality, that f(x,t) spatial distribution is given by fi and is harmonic-in-time, multiplying the
outcome by fi and integrating it from x1,x2=0 to x1,x2=1, and dropping the i subscript for convenience, one obtains the ith
mode SDOF reduced coupled fluid-plate vibration model

a1 €qþa2qþa3j
_q j _qþa4q3þa5j

_q j.’q ¼ F� sinðotÞ (40)

where

a1 ¼

Z 1

0

Z 1

0
f2dx1dx2þ

Lrf

hrP

ð

Z 1

0

Z 1

0
fdx1dx2Þ

2;a2 ¼o2
p

Z 1

0

Z 1

0
f2dx1dx2;a3 ¼

CnCdA2
Prf

2hA2rPð
ffiffiffiffiffi
Cn

p
þ

ffiffiffiffiffi
Cd

p Þ
2
ð

Z 1

0

Z 1

0
fdx1dx2Þ

3;

a4 ¼
E

2A2
PrPð1�m2Þ

½

Z 1

0

Z 1

0
fðfxx1

þfx2x2
Þdx1dx2�

2;a5 ¼
�2L2rf

b
a3;F

� ¼
F0

hrP

ð

Z 1

0

Z 1

0
f2dx1dx2Þ; (41)

o andF0 are, respectively, the frequency and amplitude of the harmonic excitation, and op is the ith natural frequency of
the dry plate corresponding to the ith normal mode fi�f used in the above equations. For convenience, Eq. (40) is
normalized using the following dimensionless system parameters and variables:

t¼ a2

a1

� �1=2

t; v¼
q

h
; b1 ¼

A

Ap
; b2 ¼

h

a
; b3 ¼

L

a
; b4 ¼

rf

rP

; b5 ¼
Cd

Cn
; b6 ¼

b
E

(42)

Inserting the above dimensionless parameters and variables into Eqs. (40) and (41), noting that the plate area is Ap ¼ a2,
and expressing the dry plate natural frequency oP as

oP ¼
k2D

a4rPh

� �1=2

;

where k is a parameter associated with the used mode shapef leads to the following one-mode non-dimensional coupled
fluid-plate vibration model;

€vþvþb1j _vj _vþb2v3þb3j _vj.’v¼ F sinðOctÞ (43)

where a dot now represents a derivative with respect to the dimensionless time t , and

b1 ¼
Cdb4½

R 1
0

R 1
0fdx1dx2�

3

2b2
1ð1þ

ffiffiffiffiffi
b5

p
Þ
2
½

Z 1

0

Z 1

0
f2dx1dx2þðb3b4=b2Þ½

Z 1

0

Z 1

0
fdx1dx2�

2�;b2 ¼
6

k2

½
R 1

0

R 1
0fðfx1x1

þfx2x2
Þdx1dx2�

2R 1
0

R 1
0f

2dx1dx2

;

ptb3 ¼
Cdk2b2

2b2
3b2

4

12ð1�m2Þð1þ
ffiffiffiffiffi
b5

p Þ
2b2

1b6
ð
R 1

0

R 1
0fdx1dx2Þ

3
ð
R 1

0

R 1
0f

2dx1dx2Þ

½
R 1

0

R 1
0f

2dx1dx2þðb3b4=b2Þð
R 1

0

R 1
0fdx1dx2Þ

2
�2
;

F ¼
F0

rPh2o2
P

; O¼
o
oP

; C ¼

R 1
0

R 1
0f

2dx1dx2þðb3b4=b2Þð
R 1

0

R 1
0fdx1dx2Þ

2R 1
0

R 1
0f

2dx1dx2

" #1=2

(44)
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Also, for convenience, the pump mean output net flux Q , given by Eq. (37) is rewritten in non-dimensional form using
the parameters and variables defined in Eq. (42), whereby one obtains

Q ¼
Oð
R 1

0

R 1
0fdx1dx2Þ

2pð1þ
ffiffiffiffiffiffi
b5
p Þ

Z T

0

_v�
b4b2

3b2
2k2

12c2b6ð1�m2Þ
.’v

� ��
Uð _vÞþ

ffiffiffiffiffi
b5

p
Uð� _vÞ

�
dt (45)

where

Q ¼
Q

a2hop
(46)

is the micropump non-dimensional output mean flux over a period of excitation T ¼ ð2p=OCÞ, and Uð _vÞ and Uð� _vÞ are unit
step functions each of which is zero when its argument is negative and 1 when its argument is positive. Note that, in the
above model, the coefficient b1 is due to diffuser/nozzle resistance (viscous pressure drop) and flow inertial effects, b2 is
due to geometric nonlinearity induced by in-plane membrane force, while b3 is due to a combined effect of inertia and
finite stiffness of the chamber flow. The case b3 is zero corresponds to a finitely rigid fluid and Eq. (43) in this case is
reduced to a second order nonlinear differential equation. And when also b2 is set to zero, e.g. when structural nonlinearity
is also ignored, Eq. (43) takes the same nonlinear form as that of the valveless micropump one-mode reduced dynamic
model presented in [16,18].

It is noted that, as can be seen from Eqs. (43)–(46), the expressions for the micropump mean flux Q and the fluid–
structural coupling parameters b1 and b3 include the mean modal deflection

R 1
0

R 1
0fdx1dx2, or a power multiple of it, of the

excited linear mode f of the dry plate vibration as a multiplying factor. Thus for a mode shape f for which this factor is
zero, e.g. for a skew symmetrical mode shape, the plate vibration becomes unaffected by the fluid and model in Eq. (43)
reduces to that of the nonlinear dry plate. For example for a plate with all edges hinged or fully clamped to rigid supports
(also for several other combination of edge-boundary conditions) the

R 1
0

R 1
0fdx1dx2 is zero for all modes other than the

fundamental one [24,25]. Thus according to the present model, as well as the models developed in [16,18], the micropump
mean output flow and the fluid–structural coupling parameters b1 and b3 are nonzero only when the plate is vibrating at
the fundamental mode: i.e. , the plate modal vibration, according to the present model and the models in [15–18], is
affected by the flow field dynamics only when the plate is vibrating at the fundamental mode. Also, according to the
present model and the models presented in [16–18], the linear undamped natural frequency on of the coupled fluid-plate
modal vibration is given by, (see Eq. (40)),

on ¼

ffiffiffiffiffiffi
a2

a1

r
¼

o2
p

R 1
0

R 1
0f

2dx1dx2R 1
0

R 1
0f

2dx1dx2þ
Lrf

hrP
ð
R 1

0

R 1
0fdx1dx2Þ

2

2
4

3
5

1=2

(47)

where op is the dry plate undamped natural frequency corresponding to the mode f. It can be seen from this equation that
for modes f for which

R 1
0

R 1
0fdx1dx2 ¼ 0, e.g. for skew symmetrical normal modes, the dry plate undamped natural

frequency coincides with that of wet plate. Also the above equation shows that coupled flow–structural interaction effect
on the linear undamped free vibration frequency of the plate appears as an added inertia, while, see Eqs. (43) and (44), this
interaction includes both the inertial (added mass) and added stiffness effects on the nonlinear un-damped free vibration
frequency of the plate. It is to be noted that the above features of the present coupled fluid-plate vibration model and the
models developed in [16–18], are in part be due to using the approximate one-mode method to simplify the continuous
model in Eq. (36). However, using, for example, a multi-mode approach, the assumed harmonic-in-time approach or other
discretization methods to approximate the continuous model in Eq. (36) may lead to predictions of the micropump
behavior different from those discussed above, and, due to a limited scope, are not pursued in this work.

5.2. Approximate analytical solution

The coefficients b1, b2 and b3 in the dimensionless nonlinear reduced single-mode coupled fluid-plate vibration model
in Eq. (43), evaluated using Eq. (44) for a selected range of typical micropump physical parameters, show that this vibration
model is strongly nonlinear. For example, for a micropump with aluminum square plate with simply supported edge
conditions, side length a=1000mm, modulus of elasticity E=7�1010 N/m2, mass density rP=2778 kg/m3, Poisson’s ratio
m=0.25, thickness h=40mm, having chamber length L=500mm, diffuser loss coefficient Cd=1, nozzle loss coefficient Cn=1.5,
diffuser/nozzle throat area 10mm, working fluid bulk modulus b=1.7�109 N/m2 and fluid mass density rf=1000 kg/m3,
Eq. (44) yields b1=36.63, b2=1.5 and b3=3.80. In addition to the fact that the nonlinear vibration model is, for the range of
parameter values considered, not weakly nonlinear, it includes a third order time derivative of the dependent variable and
is thus not readily amenable to well known approximate analytical perturbation or averaging methods. In the present
work, for the sake of simplicity, an approximate low order steady state solution to this nonlinear vibration problem in
Eq. (43) is obtained using the single harmonic balance (SHB) method. For convenience, an unknown constant phase j is
introduced in the excitation so that the fundamental harmonic response contains a single trigonometric term. Accordingly,
Eq. (43) is rewritten as

€vþvþb1j _vj _vþb2v3þb3j _vj.’v¼ F sinðcOtþjÞ: (48)
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Noting that the nonlinear terms in Eq. (47) are symmetric, an approximate SHB solution takes the form [26,27]

vðtÞ ¼ A1 sinðOctÞ (49)

where A is a constant amplitude. Substituting Eq. (49) and its time derivatives into Eq. (47) and using trigonometric
identities, it follows that

Að1�c2O2
Þþ

3

4
b2A3

� �
sin ðcOtÞþ½c2O2b1A2�c4O4b3A2�jcos ðcOtÞjcos ðcOtÞ

�
b2A3

1

4
sinð3cOtÞ ¼ F sinðcOtÞ cosðfÞþF cosðcOtÞ sinðfÞ (50)

Replacing the nonlinear term jcos ðctOjcos ðcOtÞ in Eq. (50) by a truncated Fourier series expansion and matching the
coefficients of sin ðcOtÞ and the coefficients of cos ðcOtÞ in the resulting equation, (or equivalently, multiply Eq. (50) by
sin ðcOtÞ and integrate it over one period of the forcing function, and again multiply Eq. (50) by cos ðcOtÞ and integrate it
over one period of the forcing function) leads to following two coupled nonlinear algebraic equations defining the relation
between the unknown phase f, amplitude of motion A and forcing frequency ratio O of the steady state response:

ð1�c2O2
ÞAþ

3b2A3

4
¼ F cos ðfÞ (51)

8

3p

� �
ðc2O2b1A2�c4O4b3A3Þ ¼ F sinðfÞ (52)

Eliminating the unknown phase f by squaring and adding Eqs. (51) and (52), leads to following steady state amplitude–
frequency relation

9b2
2

16p2

 !
a3þ 1:5b2ð1�lÞþ

64l2

9p2
ðb2

1�2b1b3lþb
2
3l

2
Þ

" #
a2þð1�2lÞa�F2 ¼ 0 (53)

where a=A2 and l=O2. For given values of the micropump physical parameters and motion amplitude a Eq. (52) is in this
work solved numerically for real positive roots a using a MATLAB root finding function. Samples of the numerical
simulation results obtained using Eq. (53) are presented and discussed in the next section.

6. Results and discussion

Eqs. (45) and (53), along with Eqs. (41) and (42) were used to numerically simulate, respectively, the valveless
micropump mean output flow rate Q and membrane (plate) steady state frequency response (A–O) characteristics over a
selected range of the valveless micropump physical parameters. The MATLAB root finder function ‘‘roots’’ was used to find
the roots of Eq. (53), and a fourth order Runge–Kutta program with constant integration step size of 0.01 written in
MATLAB code was used to solve the reduced nonlinear coupled fluid-plate vibration model given by Eq. (43). The
simulation was limited to the case of a square plate with simply supported edges and dynamic deflection that corresponds
to the first normal mode; e.g., f(x1, x2) takes the form

fðx1;x2Þ ¼ sin ðpx1Þsin ðpx2Þ (54)

And the selected system parameters defined in Eq. (41) were varied in the range:0:01
rb1r0:02; 0:02rb2r0:05; 0:5rb3r1; 0:3rb40:4; 0:2b5r0:7; and 0:02rb6r0:5. Poisson’s ratio m and the
diffuser loss coefficient Cd are assumed to be, respectively, 0.25 and 1. It is noted that, the dimensionless geometric
nonlinearity coefficient b2 in the present model Eq. (43) is a constant independent of the system dimensionless parameters
bi, i=1,2,y, 6, Cd and m, and is, for the first mode of the present simply supported square plate, equals to 1.5. As indicated
before, only the parameter b3 includes the effect of fluid bulk modulus of elasticity and only when this parameter is set to
zero the effect of fluid finite stiffness is assumed to be negligible. However this parameter represents the combined effects
of resistive, inertial and fluid stiffness effects, (e.g. see Eqs. (42) and (44)), and it is a function of all of the specified
micropump geometric and physical parameters. In other words, the effect of fluid stiffness is determined not only by the
fluid stiffness bulk modulus but also by all of the specified micropump geometric and physical parameters.

Examples of the obtained results are shown in Figs. 2–8. Figs. 2 and 3 are examples of the study of the accuracy of
the amplitude–frequency response analytical results obtained using the approximate analytical solution in Eq. (53) as
compared to those obtained by numerically integrating Eq. (43) and the different qualitative behaviors of the response
amplitude and output mean flux with excitation frequency ratio O. The results displayed in Fig. 3 show that, depending on
the relative values of b1, b2 (b2=1.5=constant, or 0), and b3 the frequency response curves display distinct behaviors. For
example, when the resistive effect is dominant, e.g. when b1 is large relative to b3, and b2=0, the frequency response curve
shows no peak and at a frequency O51 starts a rapid descent from a nearly constant value at low frequency to a zero value
at high forcing frequency ratio, (Case(A)). When b1 is large relative to b3, and b2&ne;0.(e.g. b2=1.5), the response curve, as
in the previous case, shows a rapid decent to zero value starting at O51 but also can exhibit a resonance peak at a forcing
frequency ratio near O=1, (Case (B)). When b1 is not large relative to b3, and b2&ne;0 the frequency response curve can
exhibit a nonlinear resonance behavior similar to that of a classical Duffing oscillator with hardening nonlinearity
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b3=0.8, b4=0.3, b5=0.6, b6=0.03, Cd=0.5, F=1, b1=0.1283, b2=1.5, b3=0.01841; Case D; b1=0.1, b2=0.04, b3=0.8, b4=0.3, b5=0.6, b6=0.03, Cd=0.5, F=1,
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(Case(C)). When only resistive and inertial effects are considered, e.g., when b1&ne;0, b2=b3=0, the frequency response
curve, which resembles that of a linear oscillator, exhibits a peak at forcing frequency ratio O51, which agrees
qualitatively with the results presented in [16]. The analytical results in this figure show a reasonable agreement with the
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Fig. 7. Effect of b5=L/a ratio on mean output flow rate Q: b1=0.02, b2=0.04, b4=0.3, b5=0.6, b6=0.03, Cd=0.5, F=2 (a) b3=0.25, b1=7.1, b2=1.5, b3=0.2205;

(b) b3=0.50, b1=4.57, b2=1.5, b3=0.3661; (c) b3=0.75, b1=3.376, b2=1.5, b3=0.448; (d) b3=1.0, b1=2.674, b2=1.5, b3=0.50; (e) b3=1.5, b1=1.889, b2=1.5,

b3=0.5614.
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numerical results shown for some points on some of these curves. It is noted that the numerical solution, as one may
expect for such a highly nonlinear third order system, is not an easy task and was found to be highly sensitive to initial
conditions. In particular, numerical verification of the results corresponding to Case (C) in Fig. 2 was not possible and it is
not clear weather this is due to instability of the obtained analytical results which was not carried out in this work due to
scope limitations, or is due to accuracy limitations of the used numerical procedure.

Fig. 3 displays the mean flux output Q corresponding to cases considered in Fig. 2. The results in this figure also show
that, depending on the relative values of b1, b2and b3, the output mean flux variation with O can exhibit distinct qualitative
behaviors. In each case, Q starts from a zero value at zero O, then follows a curve that is qualitatively similar to
corresponding amplitude–frequency response one. Also these results show a characteristic property of valveless
micropumps [16,18] that the ratio O of the excitation frequency to dry plate natural frequency at which Q attains a
maximum value, termed as the optimal operating frequency ratio, is less than that at which the plate deflection is
maximum. As noted before, for the case b2=b3=0, the present model reduces to that in [18] and the present results in Fig. 3
for this case show a similar qualitative behavior as that of the results reported in [18] which show that the Q attains a
maximum value at O51 and falls rapidly to a zero values as O is continuously increased above this optimal O value. When
b3 and/or b2are not zero, the value of the optimal operating frequency and the rate at which Q falls to zero as O is increased
above the optimal value of O depend on the relative values of b1, b2 and b3, Examples of different behaviors of Q–O curves
for different values of b1, b2 and b3 corresponding to selected values of the micropump and working fluid physical
parameters are displayed in Figs. 4–8. These results indicate that working fluid stiffness as well as the actuating membrane
geometric structural nonlinearity can have a significant effect on the predicted micropump output mean flux Q behavior
with excitation frequency. The present results also show the dynamic performance of micropump is strongly dependent on
the relative size of its internal elements. Finally, these results indicate that, (see Fig. 7), Q tends to increase moronically
with excitation amplitude, thus from control point of view the excitation amplitude can provide a valuable mean to control
the micro-pump output flux.
7. Conclusion

A reduced third order nonlinear single mode model which accounts, in a simplified form, for the plate geometric
nonlinearity due to induced in-plane membrane force and the working fluid finite stiffness, is developed and used to
simulate the dynamic behavior of a valveless micropump under simple harmonic excitation for the case of equal inlet and
outlet pressures and simply supported plate boundary conditions. The present study results indicate that working fluid
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stiffness and the actuating plate structural nonlinearity, can have, depending on the micropump geometric and physical
parameters, significant effects on the pump dynamic response characteristics. The low order approximate analytical
solution for the present third order model showed a reasonably good agreement with those obtained numerically for cases
for which the amplitude–frequency response did not exhibit a strong nonlinear resonance behavior. Stability analysis of
obtained approximate analytical solution and/or the use of an efficient numerical method are required to analyze the cases
of strong nonlinear resonance response and such a task is considered beyond the intended scope of the present work. Also
the preset single mode model, as well as those available in the open literature, is based on an initially perfectly flat plate,
uniform simple supported or clamped boundary conditions and linear self similar dynamic deflection mode shapes. The
present model and results show that the micropump can exhibit a complex nonlinear dynamic behavior which cannot be
uncovered by a simplified model and a simplified analysis. It is noted that experimental and/or numerical validations of the
obtained approximate analytical model and results are required. Also the investigation of other possible boundary
conditions, and the usage of more than one-mode shape and/or other methods to discretize the governing nonlinear
continuous field equations can give more insight into the dynamic performance of the considered valveless micropump.
Because of scope limitations a numerical validation of the obtained approximate analytical model is considered in a future
investigation.
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